| Qui veut entrer dans ma caverne ? | |
|
+6chanel L'ours Fred76 Lalber godisdead ours blanc 10 participants |
|
Auteur | Message |
---|
ours blanc
Nombre de messages : 458 Date d'inscription : 19/01/2009
| Sujet: Qui veut entrer dans ma caverne ? Jeu Fév 26 2009, 14:33 | |
| Ours blanc, qui veut protéger sa caverne, a installé un code composé de deux nombres. Ayant des problèmes de mémoire avec son âge avancé, il met en place un stratagème : Il invite Pingouin et Renne *rendeer* à venir voir son joli logis. Il glisse discrètement à Pingouin la somme des deux nombres de son code en lui précisant que ces deux nombres sont compris entre 2 et 200. Il glisse discrètement à Renne *rendeer* le produit des deux nombres de son code en lui précisant que ces deux nombres sont compris entre 2 et 200. A la fin, et *rendeer* se retrouvent et discutent : *rendeer* : "Je ne peux pas déterminer ces nombres" : "Je le savais" *rendeer* : "Alors je les ai trouvés" : " Et bien Moi aussi !" Et toi, sauras-tu me rejoindre dans ma caverne ?
Dernière édition par ours blanc le Jeu Fév 26 2009, 22:07, édité 1 fois | |
|
| |
ours blanc
Nombre de messages : 458 Date d'inscription : 19/01/2009
| Sujet: Re: Qui veut entrer dans ma caverne ? Jeu Fév 26 2009, 14:34 | |
| Allez, une petite aide : un crayon et un brouillon ne seront pas superflus | |
|
| |
godisdead
Nombre de messages : 740 Age : 46 Date d'inscription : 18/01/2009
| Sujet: Re: Qui veut entrer dans ma caverne ? Jeu Fév 26 2009, 19:39 | |
| juste une question temporelle !!!
Est-ce qu'ils ont trouvé les nombres avant de se rencontrer ou c'est pendant la discution (certe succinte) qu'ils trouvent les nombres ??? | |
|
| |
ours blanc
Nombre de messages : 458 Date d'inscription : 19/01/2009
| Sujet: Re: Qui veut entrer dans ma caverne ? Jeu Fév 26 2009, 19:41 | |
| - godisdead a écrit:
- juste une question temporelle !!!
Est-ce qu'ils ont trouvé les nombres avant de se rencontrer ou c'est pendant la discution (certe succinte) qu'ils trouvent les nombres ??? Relis bien la première consigne : "Je ne peux pas déterminer ces nombres" Ils découvrent les nombres au cours et grâce à la discussion | |
|
| |
godisdead
Nombre de messages : 740 Age : 46 Date d'inscription : 18/01/2009
| Sujet: Re: Qui veut entrer dans ma caverne ? Jeu Fév 26 2009, 19:53 | |
| Allez, je me risque à une reponse bancale ... Le pingoin decouvre le chiffre 5 ... Il ne sait pas si c'est 3+2 ou 4+1 Il imagine donc que le renne a soit un 6 soit un 4, mais dans les deux cas, il ne peut pas determiner la reponse ... Le renne decouvre le chiffre 4 ... Il ne sait pas si c'est 2*2 ou 4*1 Le renne sait egalement que le pingoin ne peut pas trouver les deux chiffres avec le 4 ou le 5 ... Le renne arrive avec son 4, et dit, je ne peux pas trouver les chiffres ... Le pingoin avec son 5 est sur qu'il ne pouvait pas le savoir .. Le renne se demande alors si le pingoin ne connait pas ses chiffres mais qu'avec le sien, il etait SUR que je ne trouverais pas, il n'a pas le 4 ... Car s'il avait le 4, il aurait eu comme choix, 2+2 et 3+1, il ne pouvait pas etre sur que je n'avais pas le 3 (ce qui m'aurait tout de suite donné les chiffres) Bref, le pingoin a le 5, donc les chiffres sont le 4 et 1 ... Maintenant, le pingoin sait que le renne sait S'il avait eu le 6, il aurait eu deux choix, donc c'est qu'il a le 4 soit 4 et 1 ... C'est coherent ??? | |
|
| |
Lalber
Nombre de messages : 18 Age : 74 Localisation : 76 Emploi/loisirs : retraité qui en profite Humeur : passagère Date d'inscription : 19/02/2009
| Sujet: Re: Qui veut entrer dans ma caverne ? Jeu Fév 26 2009, 21:07 | |
| bsr
j'espére qu'il n'y a pas un problème de vocable entre "nombre" et "chiffre"
8 + 20 et 8 x 20, 20 est un nombre (8 aussi), pas un chiffre
tel que présenté il y a des centaines de possibilités et alors il manquerait une info
cheers | |
|
| |
ours blanc
Nombre de messages : 458 Date d'inscription : 19/01/2009
| Sujet: Re: Qui veut entrer dans ma caverne ? Jeu Fév 26 2009, 22:10 | |
| - godisdead a écrit:
- Allez, je me risque à une reponse bancale ...
Le pingoin decouvre le chiffre 5 ... Il ne sait pas si c'est 3+2 ou 4+1 Il imagine donc que le renne a soit un 6 soit un 4, mais dans les deux cas, il ne peut pas determiner la reponse ...
Le renne decouvre le chiffre 4 ... Il ne sait pas si c'est 2*2 ou 4*1 Le renne sait egalement que le pingoin ne peut pas trouver les deux chiffres avec le 4 ou le 5 ...
Le renne arrive avec son 4, et dit, je ne peux pas trouver les chiffres ... Le pingoin avec son 5 est sur qu'il ne pouvait pas le savoir .. Le renne se demande alors si le pingoin ne connait pas ses chiffres mais qu'avec le sien, il etait SUR que je ne trouverais pas, il n'a pas le 4 ... Car s'il avait le 4, il aurait eu comme choix, 2+2 et 3+1, il ne pouvait pas etre sur que je n'avais pas le 3 (ce qui m'aurait tout de suite donné les chiffres) Bref, le pingoin a le 5, donc les chiffres sont le 4 et 1 ... Maintenant, le pingoin sait que le renne sait S'il avait eu le 6, il aurait eu deux choix, donc c'est qu'il a le 4 soit 4 et 1 ...
C'est coherent ??? boulette, boulette... J'ai écrit entre 1 et 200 alors que c'est entre 2 et 200. | |
|
| |
Fred76 Admin
Nombre de messages : 2925 Age : 48 Localisation : Ailleurs Date d'inscription : 16/01/2009
| Sujet: Re: Qui veut entrer dans ma caverne ? Jeu Fév 26 2009, 22:24 | |
| - ours blanc a écrit:
boulette, boulette... J'ai écrit entre 1 et 200 alors que c'est entre 2 et 200. J'ai eu bien fait de pas encore commencer à réfléchir alors ! Fred | |
|
| |
L'ours
Nombre de messages : 849 Age : 110 Date d'inscription : 27/02/2009
| Sujet: Re: Qui veut entrer dans ma caverne ? Ven Fév 27 2009, 10:08 | |
| Bonjour, Je propose 3 et 4. Succintement : D'un côté, - L'ours dit au pingouin que la somme vaut 7. - Le pingouin en déduit que les deux nombres sont soit 2 et 5, soit 3 et 4. - Il en déduit également que le produit vaut soit 10, soit 12. De l'autre, - L'ours dit au renne que le produit vaut 12. - Le renne en déduit que les deux nombres sont soit 2 et 6, soit 3 et 4. - Il en déduit également que la somme vaut soit 8, soit 7. - En discutant avec le renne, le pingouin comprend que le produit ne peut valoir 10, car ceui-ci ne peut être obtenu qu'avec 2 et 5. Le renne aurait alors été capable de trouver le code seul. C'est donc que le produit vaut 12 => CODE = 3 et 4. - En discutant avec le pingouin, le renne comprend que la somme ne peut valoir 8, car celle-ci ne peut être obtenue qu'avec 2 et 6. Le pingouin aurait alors été capable de trouver le code seul. C'est donc que la somme vaut 7 => CODE = 3 et 4. Je pense être parvenu à la bonne solution car j'ai réussi à entrer dans ta caverne, mais tu n'y étais pas. Par conséquent peut-être n'était-ce pas ta caverne. Plus sérieusement, ton énoncé ne précise pas si les deux nombres sont nécessairement différents... | |
|
| |
chanel
Nombre de messages : 337 Date d'inscription : 16/01/2009
| Sujet: Re: Qui veut entrer dans ma caverne ? Ven Fév 27 2009, 10:25 | |
| Coucou l'ours ! Bienvenue !! Je ne comprends pas pour quelle raison tu pars d'une somme de 7 et d'un produit de 12. Tu as testé avec tous les nombres jusqu'à la première solution cohérente ? Par contre, j'aimerai bien savoir aussi si les deux nombres peuvent être égaux ours blanc ? | |
|
| |
Val
Nombre de messages : 1341 Age : 54 Localisation : toujours au même endroit... Humeur : hihi Date d'inscription : 17/01/2009
| |
| |
godisdead
Nombre de messages : 740 Age : 46 Date d'inscription : 18/01/2009
| Sujet: Re: Qui veut entrer dans ma caverne ? Ven Fév 27 2009, 10:55 | |
| En discutant avec le pingouin, le renne comprend que la somme ne peut valoir 8, car celle-ci ne peut être obtenue qu'avec 2 et 6. Et pourquoi pas 4 et 4 ??? il n'est pas indiqué que les chiffres doivent etre different ... | |
|
| |
L'ours
Nombre de messages : 849 Age : 110 Date d'inscription : 27/02/2009
| Sujet: al Ven Fév 27 2009, 11:01 | |
| - chanel a écrit:
- Coucou l'ours ! Bienvenue !!
Je ne comprends pas pour quelle raison tu pars d'une somme de 7 et d'un produit de 12.
Tu as testé avec tous les nombres jusqu'à la première solution cohérente ? Merci, Oui, j'ai choisi ces nombres arbitrairement mais ça ne m'a pas demandé plus de 2 minutes, je me doutais qu'il ne serait pas nécessaire d'aller jusqu'à 199 et 200... Evidemment l'idéal aurait été de tout mettre en équation, mais présumant que tout le monde sur le forum ne parlait pas le langage mathématique, j'ai opté pour la méthode "bête et méchante", plus compréhensible - et moins fatigante... Reste à voir si les deux nombres sont nécessairement différents, évidement. | |
|
| |
Fred76 Admin
Nombre de messages : 2925 Age : 48 Localisation : Ailleurs Date d'inscription : 16/01/2009
| Sujet: Re: Qui veut entrer dans ma caverne ? Ven Fév 27 2009, 11:20 | |
| - L'ours a écrit:
- Oui, j'ai choisi ces nombres arbitrairement mais ça ne m'a pas demandé plus de 2 minutes, je me doutais qu'il ne serait pas nécessaire d'aller jusqu'à 199 et 200...
Pourtant il faudrait aller jusque la pour être sûr qu'il n'y a qu'une solution ! Mais on va laisser ce boulot à Ours blanc qui miaule. Fred | |
|
| |
L'ours
Nombre de messages : 849 Age : 110 Date d'inscription : 27/02/2009
| Sujet: i Ven Fév 27 2009, 12:17 | |
| Avoue tout de même que si je peux entrer en tapant 34, je n'aurais pas grand chose à gagner à savoir que le code 187165 peut également ouvrir la porte... et puis j'aurais plus vite fait de l'enfoncer que de passer en revue toutes les possibilités.
J'ai dû m'absenter un moment mais chemin faisant j'ai rapidement réfléchi au problème des nombres différents ou non, et... le résultat est le même.
Je peux donc au moins prétendre avoir trouvé le code le plus petit !
(Du moins si je n'ai pas fait d'erreur) | |
|
| |
godisdead
Nombre de messages : 740 Age : 46 Date d'inscription : 18/01/2009
| Sujet: Re: Qui veut entrer dans ma caverne ? Ven Fév 27 2009, 12:50 | |
| Tu peux raisonner dans l'autre sens ... Toute somme superieure à 8 aurait trop de possibilité pour que le pingoin puisse trouver avec aussi peu d'indice ... | |
|
| |
L'ours
Nombre de messages : 849 Age : 110 Date d'inscription : 27/02/2009
| Sujet: Re: Qui veut entrer dans ma caverne ? Ven Fév 27 2009, 13:31 | |
| C'est vrai, mais dit comme ça rien ne prouve que c'est bien le cas pour toutes les valeurs... (Je plaisante) D'ailleurs je suis sûr qu'ours blanc va nous démontrer mathématiquement que le couple 34 est la seule solution. C'est bien le moins qu'il puisse faire ! | |
|
| |
chanel
Nombre de messages : 337 Date d'inscription : 16/01/2009
| Sujet: Re: Qui veut entrer dans ma caverne ? Ven Fév 27 2009, 18:53 | |
| L'ours qui n'est pas le joli chat blanc serait-il celui qui sort d'une longue hibernation ? Quelques nouvelles nounours ? (au fait, pour un fort en maths, 72 : c'est étonnant, à moins que tu ne confondes âge, date de naissance, département et ... | |
|
| |
aline67
Nombre de messages : 105 Age : 103 Date d'inscription : 16/01/2009
| Sujet: Re: Qui veut entrer dans ma caverne ? Ven Fév 27 2009, 21:17 | |
| | |
|
| |
ours blanc
Nombre de messages : 458 Date d'inscription : 19/01/2009
| Sujet: Re: Qui veut entrer dans ma caverne ? Ven Fév 27 2009, 21:42 | |
| - L'ours a écrit:
- Bonjour,
Je propose 3 et 4.
Succintement :
D'un côté,
- L'ours dit au pingouin que la somme vaut 7. - Le pingouin en déduit que les deux nombres sont soit 2 et 5, soit 3 et 4. - Il en déduit également que le produit vaut soit 10, soit 12.
De l'autre,
- L'ours dit au renne que le produit vaut 12. - Le renne en déduit que les deux nombres sont soit 2 et 6, soit 3 et 4. - Il en déduit également que la somme vaut soit 8, soit 7.
- En discutant avec le renne, le pingouin comprend que le produit ne peut valoir 10, car ceui-ci ne peut être obtenu qu'avec 2 et 5. Le renne aurait alors été capable de trouver le code seul. C'est donc que le produit vaut 12 => CODE = 3 et 4. - En discutant avec le pingouin, le renne comprend que la somme ne peut valoir 8, car celle-ci ne peut être obtenue qu'avec 2 et 6. Le pingouin aurait alors été capable de trouver le code seul. C'est donc que la somme vaut 7 => CODE = 3 et 4.
Je pense être parvenu à la bonne solution car j'ai réussi à entrer dans ta caverne, mais tu n'y étais pas. Par conséquent peut-être n'était-ce pas ta caverne. Plus sérieusement, ton énoncé ne précise pas si les deux nombres sont nécessairement différents... Tiens tiens, un congénère qui tente de s'introduire chez moi. Si c'est l'ami Ursus Alpinius, je l'accueille volontiers car il va avoir plein de choses à raconter suite à son périple de plusieurs mois loin de nous, le tout autour d'un génépi. Par contre, il faudra utiliser la sonnette l'Ours, car pour le code, je ne peux accepter cette solution. En effet, reprenons le dialogue :1) Le renne ne sait pas le code, il a deux solutions pour les nombres.2) par contre, le pingouin ne peut pas répondre :"je le savais", sauf si le pingouin est menteur.il a deux produits possibles : le 10 (2*5) et le 12 (3*4 ou 6*2). Dès lors, il était incapable de savoir si le renne pouvait trouver le code (avec le 10) ou pas (avec le 12). Quelques précisions aux nombreux qui ont frappé à ma porte en ce vendredi : 1) Rien n'interdit que deux nombres identiques forment le code : ce qui n'est pas interdit par l'énoncé est envisageable. Je crois bon de préciser que cette piste est froide. 2) Il existe une unique solution avec des nombres entre 2 et 200, il me semble même que l'on peut aller jusqu'à 600 avant de voir apparaitre une 2ème solution. 3) Ce problème n'a pas encore pu être déterminé de manière complète par la communauté mathématique, il y a même une récompense à toute personne capable dapporter une démonstration dans le cas général : avis aux amateurs, ce doit être les nombres de la forme 4n+3 qui coincent. | |
|
| |
baron de roc
Nombre de messages : 55 Age : 28 Localisation : les pieds dans l'eau Date d'inscription : 06/02/2009
| Sujet: Re: Qui veut entrer dans ma caverne ? Dim Mar 01 2009, 16:02 | |
| 1) le Renne ne peut déterminer la solution : cela veut dire que pour un même produit P il y a plusieurs solutions possibles XiYi. Le Renne peut alors établir la liste L1 des produit qui ont au moins deus solutions :
Par exemple 18 = 3 x 6 et 2 x 9 et non pas 22 = 2 x 11
2) le Pingouin le savait : cela veut dire qu’à partir de la somme S, le Pingouin sait que les diverses solutions (Xi,Yi) telles que S = Xi + Yi ont des produits XiYi qui appartiennent à la liste L1 ( qu’il a pu établir de son côté) sinon il ne serait pas aussi affirmatif. Le Pingouin et le Renne peuvent établir chacun de leur côté la liste L2 des sommes telles les diverses solutions (Xi,Yi) ayant la même somme ont un produit appartenant à la liste L1 :
L2 = {11, 17, 23, 27, 29, 35, 37, 41, 47, 53}
3) Le Renne connaît la solution : cela veut dire qu’à partir des listes L1 et L2 il a pu trouver, connaissant P , une somme S et une seule. Pour cela il a pu établir pour chaque somme de L2 la liste des produits ayant une solution (Xi,Yi) telle que
S = Xi+Yi.
L1(11) = {18, 24, 28, 30} L1(17) = {30, 42, 52, 60, 66, 70, 72} L1(23) = {42, 60, 76, 90, 102, 112, 120, 126, 130, 132} ......
4) Le Pingouin connaît aussi la solution : cela veut dire que sachant que le Renne connaît la solution alors le Pingouin en déduit que la somme trouvée par le Renne est unique. Il fabrique donc un tableau identique au précédent en virant les doublons. Seule une ligne ne contient qu'une valeur de P unique :
L1(17) = {52}
Donc P = 52, S = 17 et X = 4 et Y = 13 | |
|
| |
aline67
Nombre de messages : 105 Age : 103 Date d'inscription : 16/01/2009
| Sujet: Re: Qui veut entrer dans ma caverne ? Dim Mar 01 2009, 22:40 | |
| | |
|
| |
Val
Nombre de messages : 1341 Age : 54 Localisation : toujours au même endroit... Humeur : hihi Date d'inscription : 17/01/2009
| Sujet: Re: Qui veut entrer dans ma caverne ? Lun Mar 02 2009, 15:42 | |
| Euhhhh beh perso je veux pas entrer dans la caverne du minou ourson en peluche qui se prend pour un grizzly......alors...... | |
|
| |
ours blanc
Nombre de messages : 458 Date d'inscription : 19/01/2009
| Sujet: Re: Qui veut entrer dans ma caverne ? Lun Mar 02 2009, 19:05 | |
| - Val a écrit:
- Euhhhh beh perso je veux pas entrer dans la caverne du minou ourson en peluche qui se prend pour un grizzly......alors......
Certes tu ne peux pas entrer à l'insu de mon plein gré, mais tu es la bienvenue Val et je t'ouvrirai en personne la porte de ma taverne si tu me rends visite. | |
|
| |
L'ours
Nombre de messages : 849 Age : 110 Date d'inscription : 27/02/2009
| Sujet: Re: Qui veut entrer dans ma caverne ? Mar Mar 03 2009, 13:35 | |
| Et moi qui me targue de ne pas "confondre vitesse et précipitation"... en lieu de place de "Je le savais" j'ai lu "Moi non plus". D'où mon raisonnement complètement à côté de la plaque. Le problème est nettement plus intéressant vu ainsi. L'ayant repris, j'arrive au même résultat que baron de roc. aline67, c'est moins compliqué que ça en a l'air, mais ce n'est pas évident à expliquer. Je peux toujours tenter de te montrer où était mon erreur : - Le pingouin dit qu'il sait que le renne n'a pu parvenir à la solution. C'est que, partant de ce que lui a dit l'ours (S=17), il a décomposé cette somme en ses diverses solutions (2+15, 3+14, etc.). - Ceci fait, il a, pour chaque couple de solutions, calculé le produit des deux nombres (2x15=30, 3x14=42...). - Or, notre pingouin de constater que chacun des produits pouvait être obtenu de 2 ou plus façons différentes (30=2x15 mais aussi 3x10 et 5x6...), ce qui mettait le renne dans l'incapacité de déterminer, quel que fut le produit que lui avait confié l'ours, la somme correspondante. Bien sûr, j'ai admis S=17 pour la clarté de l'explication mais c'est très vilain. Eh bien quoi, qu'a-t-il, mon âge ? Est-il interdit d'en changer ? La plupart des gens le font une fois par an, j'ai décidé de sortir de la routine, voilà tout. | |
|
| |
Contenu sponsorisé
| Sujet: Re: Qui veut entrer dans ma caverne ? | |
| |
|
| |
| Qui veut entrer dans ma caverne ? | |
|