Bonjour Emmanuel,
(Je n'ai rien contre le tutoiement)
Pour le marquage, il faudra voir cela avec les spécialistes.
Concernant cette grille, au blocage:
____a_____b_____c_____|_d_____e_____f_____|_g_____h_____i_____|
-
1_|_4_____2_____13____|_9______6____13____|_7_____5_____8_____|
2_|_9_____5_____6_____|_48_____7____48____|_3_____1_____2_____|
3_|_7_____18____138___|_12_____5____123___|_9_____4_____6_____|
-
4_|_135___18____1258__|_78_____24___9_____|_6_____37____14____|
5_|_6_____7_____4_____|_15_____3____15____|_2_____8_____9_____|
6_|_13____9_____128___|_6______24___78____|_5_____37____14____|
-
7_|_15____6_____15____|_27_____8____27____|_4_____9_____3_____|
8_|_8_____4_____7_____|_3______9____6_____|_1_____2_____5_____|
9_|_2_____3_____9_____|_45_____1____45____|_8_____6_____7_____|
Unicité : une grille "valide" est censée n'avoir qu'une solution.
Ici, on a 15ac7 : il ne peut y avoir 15ac4, les 1/5 "interchangeables" en ces 4 cases nieraient une seule solution => -1ac4; Idem avec 13cf1 et cf3 => -1cf3
C'est un RI = Rectangle Interdit (ou superposition de 2 x-wing) ; l'unicité n'est menacée qu'en cas de double x-wing sur 2 maisons (et non 4).
Ce qui donne cette grille:
____a_____b_____c_____|_d_____e_____f_____|_g_____h_____i_____|
-
1_|_4_____2_____13____|_9______6____13____|_7_____5_____8_____|
2_|_9_____5_____6_____|_48_____7____48____|_3_____1_____2_____|
3_|_7_____18____38____|_12_____5____23____|_9_____4_____6_____|
-
4_|_35____18____258___|_78_____24___9_____|_6_____37____14____|
5_|_6_____7_____4_____|_15_____3____15____|_2_____8_____9_____|
6_|_13____9_____128___|_6______24___78____|_5_____37____14____|
-
7_|_15____6_____15____|_27_____8____27____|_4_____9_____3_____|
8_|_8_____4_____7_____|_3______9____6_____|_1_____2_____5_____|
9_|_2_____3_____9_____|_45_____1____45____|_8_____6_____7_____|
Avec une situation possible de "BUG" : une grille n'ayant que des cases comportant 2 candidats (seulement 2 mêmes chiffres en case-colonne-maison) est sans solution.
Ici, il faut donc qu'il y ait 1c6 ou 8c4 : '"pseudo-case" 18b4 c46 => -1a6 et fin.
On peut aussi dire que les 2 étant bloqués en c46 => 1c6+2c4 ou 8c4+2c6 => -5c4 et -8c6 et fin.
etc...
Sans utiliser l'unicité (grille au blocage):
____a_____b_____c_____|_d_____e_____f_____|_g_____h_____i_____|
-
1_|_4_____2_____13____|_9______6____13____|_7_____5_____8_____|
2_|_9_____5_____6_____|_48_____7____48____|_3_____1_____2_____|
3_|_7____A18____138___|A12_____5____123___|_9_____4_____6_____|
-
4_|_135___18____1258__|B78_____24___9_____|_6_____37____14____|
5_|_6_____7_____4_____|_15_____3____15____|_2_____8_____9_____|
6_|_13____9_____128___|_6______24___78____|_5_____37____14____|
-
7_|_15____6_____15____|B27_____8____27____|_4_____9_____3_____|
8_|_8_____4_____7_____|_3______9____6_____|_1_____2_____5_____|
9_|_2_____3_____9_____|_45_____1____45____|_8_____6_____7_____|
Beaucoup de solutions avec als, une au hasard:
*(Als 128bd3)-2-(Als 278d47) voyeur 8b4 et fin.
Ou:
Als A : 128bd3
2 (charnière: A et B sont reliés par le 2 qui ne peut être que dans un seul Als)
Als B : 278d47
Voyeur 8b4 (8b4 voit les 8 des 2 als :8b3 d'Als A et 8d4 d'Als B)
Idem la chaîne: *81b3 / 12d3 / 27d7 / 78d4 -> -8b4 et fin.
(on voit les 2 als: maillons 1&2 (A) et maillons 3&4 (B) , la charnière 2 : maillons 2&3, et les 2 bouts de la chaîne 8b3 & 8d4 vus par 8b4)
Une autre soluce: *18b4c6-124cei6 -> -1a6 et fin.
Qui peut se dire: *(als 18b4)-8-(als 1248cei6) voyeur 1a6 et fin.(ou: *(als 128b4c6)-2-(als 124ei6) voyeur 1a6 et fin)
Ou:
Als A : 18b4
Charnière 8
Als B : 1248cei6
Voyeurs 1a6 (1a6 voit les deux 1 de B et le 1 de A)
etc...
Voili...pas forcément très douée pour les explications...
Amicalement,
Sophie